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ABSTRACT

A full-wave technique which uniquely synthesizes well-
known integral equation and mode-matching methods is
shown to be applicable to the study of propagation in mi-
crostrip structures which are on and near dielectric ridges.
Coupled microstrips on dielectric ridges and a microstrip
near a chip edge are examined to demonstrate the accu-
racy and utility of this method.

INTRODUCTION

In the sub-mm and THz frequency ranges, excessive
ohmic losses preclude the use of microstrip in monolithic
circuits. Whether coplanar waveguide, dielectric waveg-
uide, or another type of guiding structure is used in place
of microstrip, monolithic circuits apparently will still em-
ploy short lengths of complex microstrip structures. These
structures will be microstrip, in that they will consist of
conducting strips suspended by a dielectric above a ground
plane, but they will be mounted on ridges and in the close
proximity of other conductors on other ridges. For example,
a typical monolithic circuit could utilize a low-loss dielectric
ridged waveguide as a transmission line. A passive circuit
element such as an inductor could be created from the selec-
tive use of conductors in conjunction with the waveguide. A
transition to an active device would consist of a conductor
mounted on the ridged waveguide. The active device itself
may become wide compared to a guided wavelength, and,
if the electrodes are placed in a non-planar fashion on the
dielectric ridges and valleys which make up the device, then
the transverse wave propagation on the device may be sig-
nificant. Accurate methods must be developed to analyze
the propagation in these complex microstrip structures.

Over the past ten years, the characterization of mi-
crostrip structures on and near dielectric ridges has been
addressed several times. Quasi-static methods such as an
integral equation formulation {1] and the rectangular bound-
ary division method [2, 3] have considered an open mi-
crostrip on a finite dielectric and shielded microstrip near
a chip edge, respectively. In addition, a full-wave mode-
matching technique has been applied to the analysis of
microslab waveguide [4], and a modified mode-matching
technique has been developed to model transverse wave
propagation on FET structures [5]. In early 1990, the
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method of lines [6] was applied to characterize an electro-
optic modulator-type structure, a microstrip on a ridged
substrate, and, again, a microstrip near a chip edge. Both
the mode matching technique and the method of lines are
efficient, but suffer when generalized to a three-dimensional
structure (such as a microstrip discontinuity) and when ap-
plied to open structures.

In this paper, a full-wave technique which uniquely syn-
thesizes well-known integral equation and mode-matching
methods is shown to be applicable to the study of mi-
crostrip structures on and near dielectric ridges. Compared
to the method of lines and the full-wave mode matching
analyses, the integral equation-mode matching technique
is more complex than the former and similar in complexity
to the latter when shielded two-dimensional structures are
considered; however, three-dimensional structures may be
much more easily characterized by the integral equation-
mode matching technique. To introduce this method, two-
dimensional structures—specifically, a microstrip near a
chip edge and coupled microstrips on ridges—are exam-
ined.

THEORY

The general structure is shown in Figure 1. The struc-
ture is uniform in the z-direction. The outer walls are per-
fect electric conductors. Along the y-axis, the structure
is divided into two sections at y = b;. Section A is di-
vided into layers along the z-axis at z = a,,t = 1,2,... .
Conducting strips are located parallel to the z-axis. The
generalization of this technique to a structure having more
than two sections is possible, but, for simplicity, only the
two section case is considered here. The y-dimensions of
the strips are assumed to be negligible.

The fields, currents and propagation constants of the
structure are determined by solving Pocklington’s integral
equation in the spatial domain. For a two-dimensional
structure such as the one under consideration, this integral
equation reduces to

E = [ Gg Jas (1)
where Gg is the dyadic electric field Green’s function asso-
ciated with the structure, J is the current in the conduct-
ing strips, and S’ represents the surfaces of the conducting
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strips. The Green’s function is the electric field when the
conducting strips are replaced with a current line source at
(2',y').

A convenient form of the Green’s function is derived by
considering each section of the structure as a section of in-
homogeneous parallel plate waveguide. In each section, the
fields consist of infinite sums of TE, and TM, modes. The
fields away from the source obey the homogeneous wave
equation, and may be determined using vector potentials
A= ay(z,y,2)2 and F = f(2,y,2)% via
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The z-, y- and z-dependencies of a, and f, are separable.
The z-dependence in all sections is assumed to be of the
form 7772,

Application of the boundary conditions at each layer
interface and at the upper and lower conducting walls de-
termines the z-dependence of the fields in each layer in a
given section. In addition, these boundary conditions gen-
erate transcendental equations for the z-directed wavenum-
bers.

The y-dependence of the fields consists of infinite sums
of plane waves. In section A, the fields are of the form

Y~ Y (Afemvhay 4 AT et (4)
!

where A" and A; are the mode amplitudes for the {"™ mode.
For convenience in the application of the boundary condi-
tions, the fields in section B are separated into two parts,
which are designated the primary and secondary fields. The
primary fields consist of plane waves leaving the source in

the Ly-direction, i.e.,
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The boundary conditions at the source (y = y’) are satisfied
by the primary fields, and the primary field mode ampli-
tudes B, are thereby explicitly determined. The secondary
fields satisfy the homogeneous wave equation in all regions
and consist of plane waves traveling in both directions, i.e.,

EE ~ Y (Be w4 Bgetta) (6)
!

The boundary conditions at y = 0,b; and b are used to
generate two equations from which BY; and B, are deter-
mined.

The first equation for B stems from the boundary con-
ditions at the section interface y = b; and at the con-
ducting wall y = 0. The basic approach for satisfying
the boundary conditions at the section interface is mode-
matching {7, 8, 9, 10]. A transmission matrix may then
theoretically be used to relate the fields at y = b; to the
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fields at y = 0, but the number of modes necessary for con-
vergence causes numerical instability. A numerically stable
approach modifies the classical mode-matching matrix to a
scattering matrix [11, 12, 13, 14]. The scattering matrix §
for the junction at y = b; satisfies

+
. } (M)

18] [ B} + B

A-
By + Bs

where A=, A*, Bp, Bf, Bs, and B} are all column vec-
tors of the form A~ = [A] A7 ... A7 ...]%. Application
of the boundary conditions at y = § and manipulation of
the scattering matrix equation allows A% to be eliminated;
hence the incident and reflected waves at the section inter-
face are related by the expression

Bt =

[&](Bp + Bs) (8)

where

(B = Sn—5a(I+1%5n)" L*Sy (9)
L = diag{e™7Fu%}, and 7 is the identity matrix.

The boundary conditions at the conducting wall at y =
b and manipulation of the matrix equations give an expres-
sion for the section B secondary field mode amplitudes By
in terms of BE. B} may then be determined from equa-
tion 8.

Given the z-, y- and 2-dependencies of the fields, the
components of the Green’s function are known and the in-
tegral equation may be solved. The current is assumed
to be z-directed, and the distribution on the conductors
is described with an entire domain Maxwellian basis func-
tion which satisfies the edge condition. The method of
moments is applied to obtain a matrix equation for the un-
known current coeflicients. Zeros of the determinant of the
matrix determine the propagation constants of the propa-
gating modes; the currents and fields may be subsequently
determined from the integral equation.

RESULTS

The software was developed on an Apollo workstation,
and the bulk of the calculations were performed on an IBM
RS-6000 computer. In all g-value computations presented
here, excellent convergence was obtained using 100 TE,
and 100 TM, modes in each section.

Verification of the software for simple microstrip and
coupled microstrip was accomplished by comparing with
the multitudinous data available in the literature; excellent
agreement was obtained. For a microstrip near a chip edge,
results from the integral equation-mode matching method
were compared with the theoretical and experimental tve-
sults given by Thorburn et af [6] (Figure 2). The data are
generally in good accord, except for a slight offset between
the two theoretical curves. The probable cause of the varia-
tion is the inability to exactly recreate the conditions given
in [6]; very slight changes in d, w, ¢, and frequency are suf-
ficient to bring the curve into even better agreement with



the given experimental data. Also relevant to the discrep-
ancy between this work and the previously published re-
sults is the asymmetry of the problem with respect to the
center of the conductor. As the strip moves closer to the
edge of the chip, the asymmetry becomes more significant
and the ability of the symmetric Maxwellian function to de-
scribe the current distribution on the conductor becomes
impaired. Accuracy may be improved by utilizing basis
functions which allow asymmetric current, such as higher
order Chebyshev polynomials and simple pulses.

The geometry of two coupled microstrips on dielectric
ridges is given in Figure 3; characterization of this structure
is displayed in Figures 4 and 5. The first plot illustrates
the behavior of the even- and odd-mode phase constants for
different spacings over a frequency range which is roughly
centered at 94 GHz. The second plot shows the data at 94
GHz as a function of spacing and compares the result to
coupled microstrip on a continuous substrate. Two salient
features may be discerned from these data.

Typical of coupled lines, the even-mode phase constants
generally decrease and the odd-mode phase constants gen-
erally increase with increasing spacing— i.e., as the lines
become farther apart, the even and odd modes decouple
and the phase constants tend toward the single-strip value.
However, in this case, for 100pm < s < 150um, the odd-
mode phase constant decreases before it begins to increase.
At s = 100um, the ridges are contiguous and the strips
are together on a single ridge. As s increases to 110um,
the increasing gap between the ridges causes an increase
in coupling over this range, evidenced by the widening dis-
parity between the even- and odd-mode phase constants.
As s increases further, the coupling tends to decrease. The
range 100pm < s < 150um may therefore be considered a
transition region between the case of two strips on a sin-
gle ridge and the case of two strips on two ridges. The
increased coupling in this transition region raises the pos-
sibility of a simple microstrip coupler which is enhanced by
a small groove placed between the strips.

The data also demonstrate that as the spacing between
strips increases, the strips on the ridges tend to decouple
faster than the strips on the continuous substrate. This
behavior is evidenced by the faster convergence of the g-s
curves for the ridged microstrip to the single strip value of
B = 2.90k,; the B-s curves for the strips on the continuous
substrate converge more slowly to the single strip value of
B = 3.07k,. When increased packing density is a necessity,
a structure of this type may be used in place of conventional
microstrip.

CONCLUSION

An integral equation-mode matching method useful in
the study of microstrip structures on and near dielectric
ridges has been presented, and the method was applied
to the characterization of a microstrip near a chip edge
and coupled microstrip on dielectric ridges. In the future,
the method will he developed se that three-dimensional
structures as well as structures consisting of more than two
sections may be characterized.
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Figure 1: Geometry of the general structure.
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Figure 2: Comparison of this work to reference [6] in the
calculation of effective dielectric constant (= (B/k,)?) vs.
distance from the strip to the chip edge. Referring to the
inset, ¢, = 10.2, w = 0.925mm, ~A = 1.27mm, ¢ = 50.0mm,
b = 35.0mm, s = 15.0mm, and frequency = 2 GHz.
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Figure 3: Geometry of two coupled microstrips on dielectric
ridges: w = 0.1lmm, A = 0.1lmm, d = 0.05mm, ¢ = 1.3mm,
b =2.51mm, and ¢, = 12.85.
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Figure 4: Phase constant vs. frequency at various spacings
for the structure described in Figure 4.
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Figure 5: Phase constant vs. spacing at 94 GHz for mi-
crostrip on dielectric ridges (Figure 4) and microstrip on
continuous substrate (Figure 4, with the two ridges re-
placed by a single substrate which extends over the entire
width of the structure).



