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ABSTRACT

A full-wave technique which uniquely synthesizes well-

kuown integral equation and mode-matching methods is

shown to be applicable to the study of propagation in mi-

crost rip structures which are on and near dielectric ridges.

Coupled microstrips on dielectric ridges and a microstrip

near a chip edge are examined to demonstrate the accu-

racy and utility of this method.

INTRODUCTION

In the sub-mm and THz frequency ranges, excessive

ohmic losses preclude the use of microstrip in monolithic

circuits. Whether coplanar waveguide, dielectric waveg-

uide, or another type of guiding structure is used in place

of microstrip, monolithic circuits apparently will still em-

ploy short lengths of complex microstrip structures. These

structures will be microstrip, in that they will consist of

conducting strips suspended by a dielectric above a ground

plane, but they will be mounted on ridges and in the close

proximity of other conductors on other ridges. For example,

a typical monolithic circuit could utilize a low-loss dielectric

ridged waveguide as a transmission line. A passive circuit

element such as an inductor could be created from the selec-

tive use of conductors in conjunction with the waveguide. A

transition to an active device would consist of a conductor

mounted on the ridgecl waveguide. The active device itself

may become wide compared to a guided wavelength, and,

if the electrodes are placed in a non-planar fashion on the

clielectric ridges and valleys which make up the device, then

the transverse wave propagation on the device may be sig-

nificant. Accurate met hods must be developed to analyze

the propagation in these complex microstrip structures.

Over the past ten years, the characterization of mi-

crostrip structures on and near dielectric ridges has been

addressed several times. Quasi-static methods such as an

integral equation formulation [1] and the rectangular bound-

ary division method [2, 3] have considered an open mi-

crostrip on a finite dielectric and shielded microstrip near

a chip edge, respectively. In addition, a full-wave mode-

matching technique has been applied to the analysis of

microslab waveguide [4], aud a modified mode-mat thing

technique has been developed to model transverse wave

propagation on FET structures [5]. In early 1990, the

method of lines [6] was applied to characterize an electro-

optic modulator-type structure, a microstrip on a ridged

substrate, and, again, a microstrip near a chip edge. Both

the mode matching technique and the method of lines are

efficient, but suffer when generalized to a three-dimensional

structure (such as a microstrip discontinuity) and when ap-

plied to open structures.

In this paper, a full-wave technique which uniquely syn-

thesizes well-known integral equation and mode-matching

methods is shown to be applicable to the study of mi-

crostrip structures on and near dielectric ridges. Compared

to the method of lines and the full-wave mode matching

analyses, the integral equation-mode mat thing technique

is more complex than the former and similar in complexity

to the latter when shielded two-dimensional structures are

considered; however, three- dimensional structures may be

much more easily characterized by the integral equation-

mode matching technique. To introduce this method, two-

dimensional structures—specifically, a microstrip near a

chip edge and coupled microstrips on ridges—are exam-

ined.

THEORY

The general structure is shown in Figure 1. The st ruc-

ture is uniform in the z-direction. The outer walls are per-

fect electric concluctors. Along the y-axis, the structure

is divided into two sections at y = bl. Section A is cli-

vided into layers along the z-axis at z = at, i = 1, 2, . . . .

Conducting strips are located parallel to the z-axis. The

generalization of this technique to a structure having more

than two sections is possible, but, for simplicity, only the

two section case is considered here. The y-dimensions of

the strips are assumed to be negligible.

The fields, currents and propagation constants of the

structure are determined by solving Pocklington’s integral

equation in the spatial domain. For a two-dimensional

structure such as the one under consideration, this integral

equation reduces to

(1)

—
where GE is the dyadic electric field Green’s function asso-

ciated with the structure, ~ is the current in the conduct-

ing strips, and S’ represents the surfaces of the conducting
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strips. The Green’s function is the electric field when the

conducting strips are replacecl with a current line source at

(.1’’, y’).

A convenient form of the Green’s function is derived by

considering each section of the structure as a section of in-

homogeneous parallel plate waveguide. In each section, the

fields consist of infinite sums of TEC and TM. modes. The

fields away from the source obey the homogeneous wave

equation, and may be determined using vector potentials

A = a.(c, y, z)~ and ~ = jx(z,y, z)~ via

The z-, g- and z-dependencies of a. and jz are separable.

The z-dependence in all sections is assumed to be of the

form e-]p’.

Application of the boundary conditions at each layer

interface and at the upper and lower conducting walls de-

termines the z-dependence of the fields in each laye~ in a

given sect ion. In addition, these boundary conditions gen-

erate transcendental actuations for the z-directed wavenum-

hers.

The y-dependence of the fields consists of infinite sums

of plane waves. In section A, the fields are of the form

where AT and + are the mode amplitudes for the lth mode.

For convenience in the application of the boundary condi-

tions, the fields in section B are separated into two parts,

which are designated the primary and secondary fields. The

primary fields consist of plane waves leaving the source in

the +y-direction, i.e.,

The boundary conditions at the source (y = y’) are satisfied

by the primary fields, and the primary field mode ampli-

tudes B& are thereby explicitly determined. The secondary

fields satisfy the homogeneous wave equation in all regions

and consist of plane waves traveling in hot h directions, i.e.,

(6)

The boundary conditions at y = O, bl and b are used to

generate two equations from which @l and ll;~ are deter-

mined.

The first equation for Bjf stems from the boundary con-

ditions at the section interface y = bl and at the con-

ducting wall y = O. The basic approach for satisfying

the boundary conditions at the section interface is mocle-

mat thing [7, 8, 9, 10]. A transmission matrix may then

theoretically be used to relate the fields at y = bl to the

fields at y = O, but the number of modes necessary for con-

vergence causes numerical instability. A numerically stable

approach modifies the classical mode- mat thing matrix to a

scattering matrix [11, 12, 13, 14]. The scattering matrix S

for the junction at y = bl satisfies

where A–, A+, B;, Bj!, B;, and B; are all column vec-

tors of the form A- = [A; A; . . . A; . . . ]*. Application

of the boundary conditions at y = O and manipulation of

the scattering matrix equation allows A* to be eliminated;

hence the incident and reflected waves at the section inter-

face are related by the expression

B; = [R] (1?; +-B;) (s)

where

[R] = S22– s,, (1+ m,)-’ L’S,, (9)

L = diag{e-~ky’b’ }, and 1 is the identity matrix.

The boundary conditions at the conducting wall at y =

b and manipulation of the matrix equations give an expres-

sion for the section B secondary field mode amplitudes B;

in terms of B*. B~ may then be determined from equa,-

tion 8.

Given the z-, y- and z-dependencies of the fields, the

components of the Green’s function are known and the in-

tegral equation may be solved. The current is assumed

to be z-directed, and the distribution on the conductors

is described with an entire domain Maxwellian basis func-

tion which satisfies the edge condition. The methocl of

moments is applied to obtain a matrix equation for the un-

known current coefficients. Zeros of the det euninant oft he

matrix determine the propagation constants of the propag-

ating modes; the currents and fields may be subsequently

determined from the integral equation.

REstmrs
The software was developed on an Apollo workstation,

and the bulk of the calculations were performed on an IBM

RS-6000 computer. In all /3-value computations presented

here, excellent convergence was obtained using 100 TE=

and 100 TMZ modes in each section.

Verification of the software for simple microstrip and

coupled microstrip was accomplished by comparing with

the multitudinous data available in the literature; excellent

agreement was obtained. For a microstrip near a chip edge,

results from the integral equation- mode matching met hod

were compared with the theoretical and experimental re-

sults given by Thorbnrn et al [6] (Figure 2). The clata are

generally in good accord, except for a slight offset between

the two theoretical curves. The probable cause of the varia-

tion is the inability to exactly recreate the conditions given

in [6]; very slight changes in d, w, q and frequency are suf-

ficient to bring the curve into even better agreement with
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the given experimental data. Also relevant to the discrep-

ancy between this work and the previously published re-

sults is the asymmetry of the problem with respect to the

center of the conductor. As the strip moves closer to the

edge of the chip, the asymmetry becomes more significant

and the ability of the symmetric Maxwellian function to de-

scribe the current distribution on the conductor becomes

impaired. Accuracy may be improved by utilizing basis

functions which allow asymmetric current, such as higher

order Chebyshev polynomials and simple pulses.

The geometry of two coupled microstrips on dielectric

ridges is given in Figure 3; characterization of this structure

is displayed in Figures 4 and 5. The first plot illustrates

the behavior of the even- and odd-mode phase constants for

different spacings over a frequency range which is roughly

centered at 94 GHz. The second plot shows the data at 94

GHz as a function of spacing and compares the result to

coupled microstrip on a continuous substrate. Two salient

features may be discerned f~om these data.

Typical of coupIed lines, the even-mode phase constants

generally decrease and the odd-mode phase constants gen-

erally increase wit h increasing spacing— i.e., as the lines

become farther apart, the even and odd modes decouple

and the phase constants tend toward the single-strip value.

However, in this case, for IOOpm < s < 150pm, the oclcl-

mode phase constant decreases before it begins to increase.

At s = 100pm, the ridges are contiguous and the strips

are together on a singIe ridge. As s increases to llO~m,

the increasing gap between the ridges causes an increase

in coupling over this range, evidenced by the widening dis-

parity between the even- and odd-mode phase constants.

As s increases further, the coupling tends to decrease. The

range 100pm < s < 150pm may therefore be considered a

transition region between the case of two strips on a sin-

gle ridge and the case of two strips on two ridges. The

increased coupling in this transition region raises the pos-

sibility of a simple microstrip coupler which is enhanced by

a small groove placed between the strips.

‘i’he data also demonstrate that as the spacing between

strips increases, the strips on the ridges tend to decouple

faster than the strips on the continuous substrate. This

behavior is evidenced by the faster convergence of the ~-s

curves for the ridged microstrip to the singIe strip value of

P = 2.90ko; the ~-s curves for the strips on the continuous

substrate converge more slowly to the single strip value of

/3= 3.07k0. When increased packing density is a necessity,

a structure of this type may be used in pIace of conventional

microstrip.

CXINCLUSION

An integral equation-mode matching method useful in

the study of microstrip structures on and near dielectric

ridges has been presented, and the method was applied

to the characterization of a microstrip near a chip edge

and coupled mic~ostrip on dielectric ridges. In the future,

the method will be cleveloped so that three-dimensional

structures as well as structures consisting of more than two

sections may be characterized.
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Figure 1: Geometry of the general structure.
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Figure 2: Comparison of this work to reference [6] in the

calculation of effective dielectric constant (a (@/kO)2) vs.

distance from the strip to the chip edge. Referring to the

inset, 6, = 10.2, w = 0.925 mm, h = 1.27mm, a = 50. Omm,

b = 35.Omm, .s = 15.Omm, and frequency = 2 GHz.

Ia
Figure 3: Geometry of two coupled microstrips on dielectric

ridges: w = O.lmm, h = O.lmm, d = 0.05mm, a = 1.3mm,

— s= 100pm
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Figure 4: Phase constant vs. frequency at various spacings

for the structure described in Figure 4.
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Figure 5: Phase constant vs. spacing at 94 GHz for mi-

crostrip on dielectric ridges (Figure 4) and microstrip on

continuous substrate (Figure 4, with the two ridges re-

placed by a single substrate which extencls over the entire

width of the structure).
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